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Transforming growth factor-b (TGF-b) has been shown
to play an essential role in the suppression of inflam-
mation, yet recent studies have revealed the positive
roles of TGF-b in inflammatory responses. For ex-
ample, TGF-b induces Foxp3-positive regulatory
T cells (iTregs) in the presence of interleukin-2
(IL-2), while in the presence of IL-6, it induces patho-
genic IL-17 producing Th17 cells. TGF-b inhibits the
proliferation of immune cells as well as cytokine pro-
duction via Foxp3-dependent and -independent mechan-
isms. Little is known about molecular mechanisms
involved in immune suppression via TGF-b; however,
Smad2/3 have been shown to play essential roles in
Foxp3 induction as well as in IL-2 and IFN-c suppres-
sion, whereas Th17 differentiation is promoted via the
Smad-independent pathway. Interaction between
TGF-b and other cytokine signaling is important in
establishing the balance of immunity and tolerance.

Keywords: Immunity/tolerance/signal transduction/
smad/T cell.

Abbreviations: APC, antigen-presenting cell; CD,
cluster of differentiation or cluster of designation;
CIA, collagen-induced arthritis; CREB, cAMP
response element binding protein; CTLA4, Cytotoxic
T-Lymphocyte Antigen 4; DC, dendritic cell; EAE,
experimental autoimmune encephalomyelitis; IFN,
interferon; IL, interleukin; iNOS, inducible nitric
oxide synthase; IRF, Interferon regulatory factor;
iTreg, induced Treg; KO, knockout; LAP, Latency
associated protein; MHC, major histocompatibility
complex; NFAT, Nuclear factor of activated T-cells;
NK, natural killer; NO, nitric oxide; PIAS1, protein
inhibitor of activated STAT1; RAR, retinoic acid
receptor; ROR, retinoic-acid-related orphan receptor;
Runx, Runt-related transcription factor; RXR,
retinoid X receptor; Shp-1, Src homology region 2
domain-containing phosphatase-1; Smad, Sma- and
Mad-related; SOCS, suppressor of cytokine signaling;
STAT, Signal Transducers and Activator of
Transcription; TGF, Transforming growth factor; Th,
helper T; Tob, Transducer of ErbB-2; Treg,

regulatory T; TSP-1, Thrombospondin 1; WT, wild
type.

Autoimmunity and inflammatory diseases can be
caused by both excess immune reactions and decreased
immune suppression. Among immune cells, helper T
(Th) cells are known to function as central regulators
of immune responses. After activation by antigenic
stimulation, naı̈ve Th cells differentiate into either ef-
fector T cells responsible for positive immune reactions
or regulatory T cells (Tregs) responsible for the nega-
tive regulation of immunity. The balance between ef-
fector T cells and Tregs has been shown to play an
important role in the establishment of immunity or
tolerance (1).

Active immune suppression is mediated primarily
through anti-inflammatory cytokines and specialized
cells. The pleiotropic cytokines, transforming growth
factor-b (TGF-b), and interleukin-10 (IL-10) play crit-
ical roles in suppressing the immune response (2�5).
Recently, a direct connection between Treg and
TGF-b has been discovered; TGF-b has been shown
to induce Foxp3, a master regulator of Tregs in naı̈ve
T cells (6, 7). However, TGF-b has also been identified
as an inducer of effector T cells, such as Th17 cells
(8, 9). It has been shown that Tregs and Th17 cells
are interchangeable at least in in vitro systems (10).
Thus, T cell development, tolerance, homeostasis and
differentiation are highly dependent on a regulatory
network that is modulated by TGF-b. In this review,
we will focus on the regulation of both Th cells
functions and differentiation via TGF-b and its
signals.

TGF-b and signal transduction

TGF-b1, -b2 and -b3 are the three isoforms that have
been identified in mammals. Among these three iso-
forms, TGF-b1 is predominantly expressed in the
immune system and is believed to be an important
pleiotropic cytokine with potent immunoregulatory
properties (11, 12). Mice deficient in TGF-b1 develop
a multiorgan autoimmune inflammatory disease and
die a few weeks after birth (13, 14). T cells have been
shown to play important roles in this severe inflamm-
tion, since such neonatal death and inflammation were
eliminated by depleting mature T cells (15, 16).
Various transgenic mice whose T cells are unable to
respond specifically to TGF-b have also been shown to
develop autoimmune diseases, indicating that TGF-b
signaling is essential for T cell homeostasis (17�19). F
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Thus, in this review, TGF-b1 will be representative of
all TGF-bs unless otherwise specified.

TGF-b is synthesized in an inactive form, the
pre-pro-TGF-b precursor. The dimeric proprotein is
called the latency-associated peptide (LAP). The
LAP/TGF-b complex binds to the latent TGF-b-
binding protein (LTBP), a 125- to 160-kDa protein,
and the LTBP/LAP/TGF-b complex is then secreted
from cells and bound to collagen and other tissue
matrix proteins (20, 21). It has also been shown that
the LAP/TGF-b complex is highly expressed in Tregs.
Additional stimuli, such as low pH, proteolysis, and
binding to the cell surface proteins are required to lib-
erate active TGF-b (22, 23).

The major signaling pathways of the TGF-b recep-
tors (TGF-bR) are relatively simple (24). TGF-b first
binds to the TGF-bR, which then primarily activates
Smad transcription factors, including three structurally
similar proteins: two receptor-associated Smads,
Smad2 and Smad3 and one common Smad, Smad4
(25). Smad2 or Smad3 is directly phosphorylated and
activated by TGF-bR and heterodimerizes with Smad4
or TIF1g (7, 26). The activated Smad-complex trans-
locates into the nucleus, and, in a cooperative manner
with other nuclear cofactors, regulates the transcrip-
tion of target genes. Apparently, however, there exist
Smad-independent pathways (27, 28). Through mech-
anisms yet to be determined, TGF-b induces rapid
activation of Ras-extracellular signal-regulated kinase
(Erk), TGF-b-activated kinase-mitogen-activated
protein kinase (MAPK) kinase 4-c-Jun N-terminal
kinase (TAK1-MKK4-JNK), TAK1-MKK3/6-p38,
Rho-Rac-cdc42 MAPK and phosphatidylinositol
3-kinase (PI3K)-Akt pathways. Therefore, TGF-b
exerts its regulation of target cell function via a
range of mechanisms.

How TGF-b inhibits immune responses

Multiple types of immune cells can be regulated by
TGF-b. The following mechanisms are proposed: (i)
Suppression of effector Th cell differentation; (ii) con-
version of naı̈ve T cells into regulatory T cells; (iii)
inhibition of the proliferation of T cells and B cells;
(iv) inhibition of effector cytokine production, such as
IL-2, IFN-g and IL-4; (v) suppression of macrophages,
dendritic cells (DCs) and natural killer (NK) cells.

One of the most important effects of TGF-b on T
cells is the suppression of IL-2 production (29), which
leads to the anti-proliferative effect on activated T
cells. This is supported by the fact that addition of
exogenous IL-2 partially relieved TGF-b-mediated
suppression (30). However, TGF-b still inhibits several
actions of IL-2, indicating that TGF-b inhibits both
the production and intracellular signaling of IL-2.

TGF-b also regulates cell proliferation through con-
trolling the expression of cell cycle regulators, includ-
ing cyclin-dependent kinase inhibitors (CKIs), such as
p15, p21 and p27 (up-regulation) and cell cycle pro-
moters, such as c-myc, cyclin D2, CDK2 and cyclin E
(down-regulation) (31�33). TGF-b inhibits naı̈ve
T-cell proliferation more profoundly than that of

activated T cells, which may be due to reduced
TGF-b receptor II expression on activated T cells (34).

In addition to T cells, TGF-b modulates the devel-
opment and functions of various immune cells. DCs
are potent antigen-presenting cells (APCs) that acti-
vate naı̈ve T cells and induce their proliferation and
differentiation. TGF-b is necessary for the develop-
ment of Langerhans cells (LCs), which are resident
DCs present within keratinocytes in the epidermis
(35, 36). TGF-b also regulates the maturation of
differentiated DCs and DC-mediated T cell responses
(37, 38). Additionally, it regulates the
antigen-presentation function of differentiated DCs
in vitro (39). Autocrine TGF-b has been shown to be
necessary for tolerogenic future of DCs by inducing
indoleamine 2,3-dioxygenase (IDO), which is an
enzyme that inhibits T-cell proliferation (40). TGF-b
inhibits macrophage activation, such as induction of
inducible nitric-oxide synthase (iNOS) and matrix
metalloproteinase (MMP)-12 via the Smad3 pathway
(41) and also inhibits MyD88-dependent TLR signal-
ing pathways (42). Macrophages are also an important
producer of TGF-b, which is activated by the phago-
cytosis of apoptotic cells. Usually, uptake of apoptotic
cells elicits anti-inflammatory effect. Thus, induction
of TGF-b is a mechanism involving the anti-
inflammatory effect of apoptotic cells (43).

TGF-b also suppresses NK cells, mast cells, gran-
ulocytes and also controls CD8þ T-cell proliferation
and effector functions (2, 44). Recent studies have
shown that TGF-b is important for Treg-induced in-
hibition of the exocytosis of granules and the cytolytic
function of CD8þ T cells (45).

Although these immune cells are negatively regu-
lated by TGF-b, Th cells play most essential roles in
the immunosuppresive effect of TGF-b, because the
neonatal lethality of TGF-b1-deficient mice was elimi-
nated by depletion of CD4þ T cells (46), and the cross-
ing of TGF-b1-deficient mice onto a major
histocompatibility complex (MHC) class II null back-
ground prevented this inflammation (47). We will
therefore focus on the effect of TGF-b on Th cells in
the following sections.

Overview of helper T cell differentiation

After emigrating from the bone marrow, thymocyte
progenitors enter the thymus, and following positive
selection, CD4þ or CD8þ single positive (SP) cells mi-
grate to the periphery as naı̈ve T cells. Naturally occur-
ring CD4þCD25þ Foxp3þregulatory T cells (nTregs)
also develop in the thymus from immature CD4þ

T cells, but the mechanism of their development re-
mains unclear (1). After exiting the thymus, naı̈ve
T cells are activated by APCs and differentiate into
effector or memory T cells (Fig. 1).

Upon antigen stimulation, CD4þ Th cells follow dis-
tinct developmental pathways, attaining specialized
properties and effector functions. Th cells are trad-
itionally thought to differentiate into Th1 and Th2
cell subsets. Cells of the Th1 lineage, which are evolved
to enhance eradication of intracellular pathogens (e.g.
intracellular bacteria, viruses and some protozoa), are
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characterized by their production of interferon-g
(IFN-g), a potent activator of cell-mediated immunity;
cells of the Th2 lineage, which evolved to enhance elim-
ination of parasitic infections (e.g. helminths), are
characterized by production of IL-4, IL-5 and IL-13,
which are potent activators of B-cell immunoglobulin
(Ig)E production, eosinophil recruitment and mucosal
expulsion mechanisms (mucous production and hyper-
motility), respectively. Immune pathogenesis that re-
sults from dysregulated Th1 responses to self or
commensal floral antigens can promote tissue destruc-
tion and chronic inflammation, whereas dysregulated
Th2 responses can cause allergy and asthma (Fig. 1).

Recently, a novel Th cell subset has been described
that produces IL-17 (Th17) and has been identified as a
subset distinct from Th1 or Th2 cells (48�52). Th17
cells secrete a distinctive set of immunoregulatory cyto-
kines, including IL-17A, IL-17F, IL-22 and IL-21.
These cytokines collectively play roles in inflammation
and autoimmunity and in elimination of extracellular
bacterial and fungal pathogens. Murine autoimmue
models, such as experimental autoimmune encephalitis
(EAE) and collagen-induced arthritis (CIA), have been
shown to be dependent on Th17 cells.

Th1 polarization is primarily driven by IL-12 and
IFN-g, while Th2 polarization is primarily driven by
IL-4. These respective cytokines signal via STAT4,
STAT1 and STAT6 to directly control the transcrip-
tion factors T-bet and GATA3, which, in turn, deter-
mine Th1 and Th2 differentiation, respectively (53).
Th1 cells produce IFN-g, which facilitates their differ-
entiation while inhibiting IL-4-mediated Th2 differen-
tiation. Reciprocally, Th2 cells produce IL-4 and
IL-10, which strongly inhibit IL-12/IFN-g-driven Th1
differentiation.

The Th17 differentiation of naı̈ve T cells is initiated
by IL-6 and TGF-b (54�56). In addition, IL-23, as well
as IL-21, is thought to be a key cytokine for the

maturation and/or maintenance of Th17 cells (49, 50,
57, 58). IL-6, IL-21 and IL-23 all activate STAT3,
which is shown to be essential for Th17 differentiation
(59�61). It has also been reported that STAT3 plays a
critical role in the induction of the orphan nuclear re-
ceptor, RORgt, which directs Th17 cell differentiation
by inducing the IL-23 receptor (62). The critical role of
STAT3 in Th17 differentiation was also confrimed in
human patients lacking functional STAT3 (63�65).

TGF-b also induces differentiation of naı̈ve T cells
into Foxp3þ Tregs (iTregs) in the peripheral immune
compartment (6; Fig. 1). The role of TGF-b in Th17
and iTreg differentiation will be discussed later.

Regulation of effector Th-differentiation by
TGF-b

Local TGF-b activation through Treg/DC interaction
seems to be necessary for both immune suppression
and Th17 generation. T cell specific TGF-b1 knockout
(KO) revealed that T cell-produced TGF-b1 promoted
Th17 cell differentiation and was essential for the in-
duction of the EAE model (66). Local, but not system-
ic, administration of anti-TGF-b antibody inhibited
EAE development (67). Since the TGF-b/LAP com-
plex is highly expressed on Tregs, these studies suggest
that TGF-b1 originating from Tregs is responsible for
Th17 differentiation.

TGF-b inhibits Th1 and Th2 differentiation from
naı̈ve T cells in vitro (2). TGF-b blockade of Th1 cell
differentiation is associated with reduced IL-12 recep-
tor b2 (IL-12Rb2) and T-bet expression (68). T-bet is
required for the induction of IL-12Rb2 (69).
Therefore, reduced IL-12Rb2 levels upon TGF-b treat-
ment is probably due to its inhibition of T-bet expres-
sion, which is dependent on the IFN-g/Stat1 pathway
(69). TGF-b also inhibits Th2 differentiation by sup-
pressing GATA-3 expression and IL-4 mediated

Fig. 1 Schematic overview of Th cell differentiation. See detail in the text.
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STAT6 activity (70, 71). It has been suggested that the
role of TGF-b in Th17 differentiation is the suppres-
sion of Th1 and Th2 differentiation (i.e. suppression of
the production of IFN-g and IL-4), since these cyo-
kines strongly inhibit Th17 differentiation. This is sup-
ported by a report showing that IL-6 alone was
sufficient in inducing robust differentiation of Th17
cells in STAT6�/�T-bet�/� mice, which are unable
to generate Th1 and Th2 cells (72). TGF-b,however,
may play a specific role in Th17 differentiation, other
than Th1 and Th2 suppression, because antibodies
against IFN-g and IL-4 could not completely replace
TGF-b (55), and RORgt, the master regulator of
Th17, was induced by TGF-b alone even in the absence
of IL-6 (73).

Interestingly, TGF-b partially inhibits IFN-g pro-
duction and IL-12 mediated STAT4 phosphorylation
in fully-differentiated Th1 cells, while IL-4 production
and IL-4 mediated STAT6 activation in fully-
differentiated Th2 cells were unaffected by TGF-b
(74). Recently, it has been shown that TGF-b induces
robust IL-9 production in the presence of IL-4, which
are now called Th9 cells (75). Regulation of Th cell
differentiation by TGF-b is summarized in Fig. 2.

Regulation of Treg-differentiation by TGF-b

TGF-b has been shown to induce Foxp3 (6), a master
transcriptional factor of Treg cells (1). Foxp3 in CD4þ

T cells is responsible for the suppression activity of
Tregs. Foxp3 inhibits secretion of proinflammatory
cytokines, including IL-2, IFN-g, IL-4 and IL-17,
enhances expression of anti-inflammatory cytokines,
such as IL-10 and TGF-b, and up-regulates an inhibi-
tor for co-stimulation, CTLA4 (76�78). TGF-b plays
an important role in generating induced Tregs (iTregs)
from naı̈ve T cells. TGF-b has also been implicated in
the maintenance of Foxp3 in thymus-derived nTregs
(1). TGF-b1 deficient mice showed normal nTreg
developement in the thymus but the peripheral Tregs
were significantly reduced in number (79). Recently,
however, TGF-b has been implicated in the develop-
ment of nTregs during the neonatal stage in the thymus

(80). The role of TGF-b in nTreg generation is still
unclear.

When naı̈ve T cells were stimulated with DCs in
the presence of TGF-b, antigen-specific Foxp3þ
iTregs were generated (81). These in vitro-generated
iTregs can prevent experimental autoimmune diseases
(81). DCs in the presence of TGF-b or specific DC
subsets (CD8þ CD205þ DCs) also promote nTreg
expansion by selectively suppressing effector T-cell
expansion (82).

Endogenous TGF-b during T/DC interaction par-
ticipates in maintaining the balance between effector
T cells and Tregs. We have shown that
SOCS3-deficient DCs, in which STAT3 was constitu-
tively activated, selectively enhance expansion of
nTregs (83). This effect was canceled by anti-TGF-b
antibody and SOCS3-deficient DCs produced higher
levels of TGF-b1 than did WT DCs (83). TGF-b pro-
moter analysis revealed that STAT3 binds to the
region of the TGF-b promoter, which may explain
high levels of TGF-b in SOCS3-deficeint DCs (84).
Adoptive transfer of SOCS3-deficient DCs suppresses
EAE. Thus, TGF-b during T/DC interaction is im-
portant for the determination of immunity or
tolerance.

Molecular mechanism of Foxp3 induction
by TGF-b

Foxp3 expression is tightly regulated by various fac-
tors. The Foxp3 promoter/enhancer region contains
three evolutionary conserved non-coding sequence
(CNS) elements where several essential transcription
factors bind. Rudensky’s group described the function
of three Foxp3 CNS elements (CNS1-3) in Treg cell
fate determination in mice using a KO strategy (85).
CNS1, which contains a TGF-b-NFAT response elem-
ent, is superfluous in nTreg cell differentiation, but
plays a prominent role in iTreg cell generation in
gut-associated lymphoid tissues.

We, and others, have found Smad-binding elements
in the CNS1 region of the Foxp3 promoter (86, 87).
This region contains two consecutive Smad-binding
elements and one NFAT binding site. Previously,
Smad3, but not Smad2, was implicated in the induc-
tion of Foxp3 (87) because Smad2 has a low
DNA-binding activity compared to that of Smad3.
However, using Smad2-deficient T cells, we demon-
strated that both Smad2 and Smad3 are essential for
TGF-b-mediated induction and maintenance of Foxp3
expression (88). Like TGF-�1 KO mice, T-cell specific
Smad2- and Smad3-deficient mice possess normal
nTreg cells in the thymus, but their number was
decreased at the periphery (88).

TGF-b mediated Foxp3 expression is regulated by
various factors. The IL-2/STAT5 signal is an essential
factor for iTreg generation (89�91), whereas inflamma-
tory cytokines IL-6 and IL-4 suppress iTreg (55, 86).
STAT6 activated by IL-4 may bind to the Foxp3 pro-
moter, thereby inducing chromatin remodeling (86).
Recently, retinoic acid (RA), has been discovered as
a potent inducer and preserver of Foxp3 in iTregs

Fig. 2 Effect of TGF-b on immune cells. TGF-b inhibits prolifer-
ation of various immune cells, inhibits Th1 and Th2 differentiation,
induces Th17 and iTregs and inhibits maturation of other cells such
as CD8þ CTL, NK cell, DC and macrophages.
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(92). The RA receptor directly interacts with the
Foxp3 promoter (86). A reporter assay using a series
of deletion mutants revealed that RA-responsive
element was present between þ2114 and þ2350 and
interacts with the RA receptor complex, RAR-a/
RXR-a. This region was 300 bp upstream of a putative
STAT6-binding site (86). The mechanisms by which
IL-6/STAT3 inhibits Foxp3 expression are still
unknown.

STAT1 seems to have different effects on
TGF-b-mediated Foxp3 gene expression in humans
and mice. The STAT1-activating cytokines IL-27 and
IFN-g amplify TGF-b-induced FOXP3 expression in
human T cells (93). This study showed that the STAT1
binding element was present within the proximal
region of the human FOXP3 promoter. While
IFN-g-activated STAT1 has been shown to inhibit
Foxp3 induction in murine T cells (94, 95), the
reason for this difference between human and mouse
has not been clarified.

The Notch and TGF-b signaling pathways coopera-
tively regulate Foxp3 expression and regulatory T-cell
maintenance (96). Pharmacologic inhibition of Notch
signaling using g-secretase inhibitor (GSI) treatment
blocks TGF-b1-induced Foxp3 expression (96). Since
Smads interact with various transcription factors, add-
itional factors involving the regulation of iTreg gener-
ation will undoubtedly be discovered.

Treg is a major source of TGF-b, and TGF-b
is one of the effector molecules of Tregs

As described above, Tregs express LAP on their mem-
brane surface at high levels (22, 23). The CD25þ CD4þ

LAPþ T cells (i.e. LAPþ Tregs) are more potent in
their regulatory activity than are CD25þCD4þ LAP�

T cells and the LAPþ cells are considered to be a major
source of active TGF-b. To be expressed on the cell
surface as LAP, the TGF-b precursor must be cleaved
by the endopeptidase furin in the Golgi. Consistent
with this hypothesis, conditional deletion of furin in
T cells allows for normal T-cell development but im-
pairs the function of regulatory and effector T cells,
which, in turn, produce less TGF-b. Furin-deficient
Tregs are less functional in a T-cell transfer colitis
model and fail to induce Foxp3 in T cells (97). The
LAP-activating receptors, such as CD36/TSP-1 and
integrin aVb6, are expressed on monocytes, endo-
thelial cells, and DC, but not on T cells (20). Thus,
LAP/TGF-b on Tregs will be activated via the inter-
action between Tregs and APCs. This is consistent
with reports showing that conditional deletion of
integrin aVb6 or aVb8 on DCs resulted in auto-
immune diseases (98, 99). TGF-b produced by
Foxp3-expressing regulatory T cells was required to
inhibit Th1-cell differentiation and inflammatory-
bowel disease in a transfer model (18). As mentioned,
TGF-b on Tregs is required for Th17 development
(66). These data suggest that the major source of
TGF-b in the immune system is regulatory T cells,
which are activated by Treg/DC interaction.

Smad-dependent and -independent
regulation of Th differentiation by TGF-b

The downstream mechanism for the regulation of
T cells by TGF-b remains unclear. It has been reported
that Smad2 or Smad3 regulates a distinctive sets of
genes in fibroblasts and tumor cells (24). Smad2-KO
mice are embryonic-lethal (100), and Smad3-KO mice
exhibit inflammatory diseases (101), suggesting that
Smad2 is involved in mediating signals during devel-
opment, while Smad3 is important for anti-
inflammation. Moreover, the disruption of Smad4,
specifically in T cells, results in colitis and an increased
susceptibility to spontaneous colo-rectal tumorigenesis
(102). These reports suggest that the Smad3/4 pathway
is an important mediator of TGF-b signaling in
immune regulation. However, the phenotypes of
Smad3- or Smad4-single deficient mice were much
milder than those of T-cell-specific TGF-�RII KO
mice (19), suggesting that Smad2 may also play a
role in immune regulation.

T-cell-specific Smad2 conditional KO mice revealed
unexpected overlapping functions of Smad2 and
Smad3 in TGF-b-induced Foxp3 induction as well as
in Th functions (88). Smad2/Smad3-double KO mice,
but not single KO mice, developed fatal inflammatory
diseases, with higher IFN-g production and reduced
Foxp3 expression in CD4þ T cells at the periphery
(88). TGF-b mediated induction of Foxp3, as well as
suppression of IFN-g and IL-2 was partialy impaired
in Smad2- and Smad3-deficient T cells, and was com-
pletely eliminated in Smad2/3-double KO T cells (88).
Thus, Smad2 and Smad3 are redundantly essential for
iTreg induction and Th suppression.

Recent studies have demonstrated that
TGF-b-induced Foxp3 antagonizes RORgt, which is
also induced by TGF-b, to inhibit Th17 cell differen-
tiation (73, 78). It has not yet been clarified, however,
how TGF-b induces both the transcription factor
Foxp3 and RORgt which have diametrically opposed
physiological functions: one interacts with anti-
inflammatory Tregs and the other induces inflamma-
tory Th17 cells. It has been suggested that RORgt
induction by TGF-b is independent of Smad4 (103).
Takimoto, T et al. also demonstarted that both
Smad2 and Smad3 were dispensable for the induction
of RORgt (88). Interestingly, however, Th17 develop-
ment was indirectly regulated by Smad2/3 signaling.
Th17 cell development was reduced in Smad-deficient
CD4þ T cells because of the higher production of
Th17-inhibitory cytokines, such as IL-2 and IFN-g,
from these T cells. Therefore, Smad signaling indirectly
promotes the inducing of Th17 cell differentiation by
suppressing Th17 inhibitory cytokine production.

It is important to understand the role of IL-6/
STAT3 in the generation of Th17 differentiation in
the presence of TGF-b. IL-6 is apparently necessary
for the suppression of Foxp3 and for maintaining
high levels of RORgt (62, 78). STAT3 may suppress
Foxp3 expression via a direct binding (104). In add-
ition, IRF4 (105) and c-Maf (106, 107), which are
upregulated by STAT3, have been shown to be neces-
sary for RORgt expression. Since Foxp3 inhibits the
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transcriptional activity of RORgt, in the absence of
IL-6/STAT3 signals, Foxp3 will overwhelm the activ-
ity of RORgt. Regulation of Th17 and iTregs through
Smad-dependent and independent mechanisms are
illustrated in Fig. 3.

Smad-mediated suppression of the cytokine
production

TGF-b mediated suppression of IFN-g, IL-2 and IL-4
production was partially impaired in Smad2-KO
T cells and Smad3-KO T cells (88, 108), and com-
pletely eliminated in Smad2/3-double KO T cells
(88). Therefore, suppression of cytokine production
by TGF-b is Smad2/3-dependent (Fig. 3B). However,
molecualr mechanism of this suppression has not
been clarified yet.

TGF-b suppresses IL-2 production in T cells poten-
tially through direct inhibition of IL-2 promoter activ-
ity. A cis-acting enhancer DNA element was identified
as critical in suppressing IL-2 production via TGF-b
(109). Tob, a member of an anti-proliferative gene
family, was shown to bind to Smad2, thereby inhibit-
ing IL-2 production (110). The interaction between
Tob and Smad3, however, was not observed.
Runx1/3 also play essential roles in cytokine produc-
tion from CD4þ T cells, and may be potential inter-
action partners of Smad2 and/or Smad3 (111). NFAT
could be a common target of Smad2 and Smad3,
because NFAT is an essential transcription factor for
IL-2 mRNA induction. However, the interactions be-
tween NFAT and Smad2/3 have not been identified.

TGF-b inhibits IFN-g production by suppressing
T-bet, which is a transcription factor critical for
IFN-g production and Th1 differentiation of CD4þ

T cells (68). T-bet expression is induced by STAT1
and STAT4, thus Smads may inhibit IFN-g produc-
tion by suppressing STAT1 and STAT4. Similarly,
TGF-b inhibits IL-4 production probably by suppress-
ing IL-4-mediated STAT6 activation. The molecular
mechanism by which Smads inhibit STAT have not
been well understood. One paper has suggested that
TGF-b1 suppresses IFN-g-induced T-bet expression
through the hemopoietic protein tyrosine phosphatase
Src homology region 2 domain-containing
phosphatase-1 (Shp-1) (112). Shp-1 was shown to
play a vital role in TGF-b1’s suppressive effects, be-
cause the suppression activity of TGF-b was complete-
ly eliminated in Shp-1 deficient CD4þ T cells. The way
in which Smads are involved in the induction of Shp-1,
however, still remains unclear.

Reciprocal regulation of TGF-b signaling and
IFN-c signaling

There is extensive crosstalk between the TGF-b1/Smad
signaling and the JAK-STAT pathway (113, 114). For
example, IFN-g suppresses TGF-b1 signaling through
upregulation of the inhibitory Smad7. IFN-g also in-
hibits TGF-b1 responses via STAT1-mediated seques-
tration of the nuclear coactivator p300/CREB-binding
protein, preventing its association with Smads and
blocking Smad transcriptional activity (115). In con-
trast, little is known about the suppression mechanisms
of the JAK-STAT pathway via TGF-b1. TGF-b1 sup-
presses NO production from macrophages stimulated
with LPS and IFN-g, and TGF-b1 functions as a nega-
tive autocrine feedback regulator to prevent tissue
injury caused by excessive NO (116, 117). Previous
reports have suggested that TGF-b1 reduces

Fig. 3 Role of TGF-b in Th17 and iTreg differentiation. (A) RORgt, a master transcription factor for Th17 is induced by TGF-bþ IL-6, which
requires STAT3 but not Smad2/3/4. Smad-independent mechanism is shown as ‘?’. Foxp3, a master transcription factor for Treg is induced by
TGF-b, and Foxp3 levels become higher by the IL-2/STAT5 signaling. This step is Smad2/3 dependent. STAT3 and STAT5 inhibit Foxp3 and
RORgt induction, respectively. (B) Regulation of iTreg and Th17 by IL-6. In iTreg condition, Foxp3 binds to RORgt, thereby suppressing
transcriptional activity of RORgt and Th17 differentiation. STAT3 induces IRF4 and c-Maf, which supports expression of RORgt expression.
STAT3 also inhibits Foxp3 expression. Suppression of IL-2, IFN-g and IL-4 by TGF-b, which is Smad2/3-dependent also promotes Th17
differentiation.
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IFN-g-induced iNOS mRNA and protein levels (116,
118) . We have also found that TGF-b1 not only accel-
erated proteosomal degradation of iNOS but also in-
hibited iNOS mRNA transcription by suppressing
STAT1 activation (119). Additional analyses showed
that TGF-bRI interacted with and phosphorylated
IFN-g receptor1 (IFNGR1), which is a novel mechan-
ism of STAT1 repression by TGF-b1 (119). Another
study suggested that TGF-b inhibits IFN-g mediated
STAT1 activation via the induction of STAT1-PIAS1
(a protein inhibitor of activated STAT1) interaction
(120).

SOCS1 is a potent inhibitor of signaling events sti-
mulated by IFN-g, and in the absence of the SOCS1
protein, STAT1 is highly activated, and, subsequently,
T cells are unconditionally hyperactivated (121, 122).
SOCS1-deficient mice die within 3 weeks after birth
due to very severe inflammtion, just as do
TGF-b1-deficient mice. We therefore hypothesized
that TGF-b signaling was impaired in
SOCS1-deficient T cells. SOCS1-deficient T cells were
resistant to all effects of TGF-b. TGF-b could not
suppress IFN-g production very efficiently in
SOCS1-deficient CD4þ T cells (123). Moreover,
TGF-b mediated induction of Foxp3 and RORgt
was impaired in SOCS1-deficient T cells (123, 124).
Such TGF-b resistance was IFN-g-dependent, because
TGF-b functioned normally in SOCS1/IFN-g-double
KO T cells. In other words, SOCS1 is necessary for
proper TGF-b signaling by protecting cells from the
strong antagonistic effect of IFN-g.

The molecular mechanism of IFN-g-mediated
TGF-b signal suppression in T cells has not been

clearly identified. We could observe neither Smad7 in-
duction nor suppression of Smad2 phosphorylation in
SOCS1-deficient cells. In STAT1�/� cells, IFN-g-
mediated suppression was eliminated (Ichiyama
et al., unpublished data). Therefore, our data suggest
that STAT1 suppresses TGF-b signaling, while SOCS1
enhances TGF-b signaling by repressing STAT1. The
precise molecular mechanism for STAT1-mediated
Smad suppression is still unknown. However, it is
apparent that the reciprocal suppression of IFN-g
and TGF-b is significant in the detemination of
immunity or tolerance. Current model is illustrated
in Fig. 4.

Conclusion

The importance of active immune suppression is
widely acknowledged. Studies on TGF-b and Tregs
have shed light on immune suppression applications.
Advances in these areas have been and are currently
being translated into clinical benefits. Further investi-
gations are warranted to clarify the mechanism
through which TGF-b and Tregs control immune re-
sponses. In addition, as TGF-b function in
non-lymphoid systems, further studies on both the
roles of TGF-b and Foxp3 in non-lymphoid systems
and on the interaction between lymphoid and
non-lymphoid systems are essential for achieving a
more comprehensive view of our immune system.
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105. Huber, M., Brüstle, A., Reinhard, K., Guralnik, A.,
Walter, G., Mahiny, A., von Löw, E., and Lohoff, M.
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